<u>SOCI 620: QUANTITATIVE METHODS 2</u>

Agenda 1. Administrative

- Survival analysis 2. Modeling "survival" 3. Time-to-event models & censored data 4. Hazard/survival models

Presentation order:

2

- i Mahjoube
- i Jordan
- : Zacharie
- Ella
- : Kaitlin
- : Zekai
- E Terhas
- **:** Trent

Time-toevent models

TIME TO EVENT

For many real-world problems, a model needs to account for *uncertainty in event timing*

- : Recidivism
- E Career length
- Life expectancy
- E Time to residency
- E Regime length
- E Protest event length

Rossi (1980) recidivism data

Observational data for one year after release for 432 convicted people in Maryland in the late 1970s.

Treatment: receiving "financial aid" Rossi, Peter Henry, Richard A. Berk, and Kenneth J. Lenihan. 1980. *Money, Work, and Crime: Experimental Evidence*. Academic Press.

ID	week_arrested	arrested	financial_aid	black	•••
1	20	1	0	1	
2	52	0	1	1	
3	52	0	0	0	
4	17	1	0	1	
•••	•••	•••	•••	•••	

DURATION VS. HAZARD

Two common approaches to modeling *sources* of differences in timing:

Duration:

Model the duration of the event as a random variable with expectation determined by individual characteristics

Hazard:

Model the event as a (conditional) Bernoulli random variable with the probability determined by individual characteristics

Modeling duration

Choose an outcome distribution (e.g. Gamma, Weibull, exponential, log-normal, ...) and follow the same strategy as we have for other GLM models:

$$W_i \sim ext{Gamma}\left(\lambda, rac{\lambda}{\mu_i}
ight) \ \log(\mu_i) = eta_0 + eta_1 T_i + eta_2 B_i + \dots$$

Problem:

What do we do with people that were not arrested during the year? (censored data)

CENSORED DATA

Option 1 (bad)

We *could* drop observations for whom we do not know whether or when they were arrested. **This is a bad idea** and will almost certainly lead to biased results (see lecture on missing data)

Option 2 (better)

A better approach is to treat the arrest timing for those who were not arrested during the 52 week sample period as missing data for which we have a definite lower limit.

There are many robust ways to deal with this sort of censored data. In a Bayesian context the most common approach is treat the missing values as parameters with strong priors

Types of censoring:

- *Right-censored* We only observe the data *before* a specific time
- ELEFT-censored We only observe the data after a specific time
- *interval-censored* We only observe the data within a specific time time interavl

<u>CENSORED DATA</u>

Modeling hazard

Survival function

 $S(t) = \operatorname{Prob}(Y > t)$

Probability that the event will happen after a given time t.

Hazard function

$$rac{1}{\delta} \lambda(t) = \lim_{\delta o 0} \; rac{\operatorname{Prob}(t \leq Y \leq t + \delta | Y > t)}{\delta} \; .$$

i "Instantaneous" probability of the even happening, conditional on it *not* having happened already

Neither of these is observed

Discrete version of Cox Proportional Hazard Model:

 $\mathrm{Prob}(W_i=t|W_i\geq t)=\lambda_0(t)\mu_i \ \log(\mu_i)=eta_0+eta_1T_i+eta_2B_i+\dots$