SOCI 620

- March 21
 1. Random slopes
 2. Multivariate normal distribution
 3. Jointly distributed random effects
 4. Specifying formulas in R

Random slopes models

Random intercepts (refresher)

Random intercept model of test score

$$S_{ik} \sim \text{Norm}(\mu_{ik}, \sigma)$$
 $\mu_{ik} = \beta_{0k} + \beta_1 Age_i$

$$\beta_{0k} = \gamma_{00} + \eta_{0k}$$

η_{0k} allows each classroom to have a different average score (intercept)

$$\eta_{0k} \sim \mathsf{Norm}(0, \phi_0)$$

(Fixed priors omitted)

Random slopes

$$\begin{array}{ll} \textbf{Independent} \\ \textbf{random coefficients} \end{array} \quad \begin{array}{ll} S_{ik} \sim \text{Norm}(\mu_{ik}, \sigma) \\ \\ \mu_{ik} = \beta_{0k} + \beta_{1k} Age_i \end{array}$$

$$eta_{0k} = \gamma_{00} + \eta_{0k}$$
 $eta_{1k} = \gamma_{10} + \eta_{1k}$

 η_{0k} and η_{1k} allow each classroom to have a different intercept and a different slope

$$\eta_{0k} \sim ext{Norm}(0, \phi_0)$$
 $\eta_{1k} \sim ext{Norm}(0, \phi_1)$
(Fixed priors omitted)

Random slopes

Independent random coefficients

$$S_{ik} \sim \text{Norm}(\mu_{ik}, \sigma)$$

$$\mu_{ik} = \beta_{0k} + \beta_{1k}Age_i$$

$$\beta_{0k} = \gamma_{00} + \eta_{0k}$$

$$\beta_{1k} = \gamma_{10} + \eta_{1k}$$

$$\eta_{0k} \sim \mathsf{Norm}(0, \phi_0)$$

$$\eta_{1k} \sim \mathsf{Norm}(0, \phi_1)$$

 η_{0k} and η_{1k} are independent: knowing one tells us nothing about the other.

(Fixed priors omitted)

Independence of random effects is rarely a realistic assumption.

The multivariate normal distribution

Multivariate normal distribution

Joint distribution

be independent

nt distribution over
$$y_0$$
 and y_1 Variables may not be independent $\begin{bmatrix} y_0 \\ y_1 \end{bmatrix} \sim \text{MVNorm} \begin{pmatrix} \begin{bmatrix} \mu_0 \\ \mu_1 \end{bmatrix}, \begin{bmatrix} \sigma_0^2 & \sigma_{01} \\ \sigma_{01} & \sigma_1^2 \end{bmatrix} \end{pmatrix}$

 μ_0 and μ_1 are mean of y_0 and y_1 , respectively

The covariance matrix describes the way that y_0 and y_1 inform each other

Off-diagonal elements depend on the correlation between y_0 and y_1 (ρ_{01})

Multivariate normal distribution

Multivariate normal distribution

Multivariate normal in k dimensions:

$$\begin{bmatrix} y_0 \\ y_1 \\ \vdots \\ y_k \end{bmatrix} \sim \text{MVNorm} \begin{pmatrix} \begin{bmatrix} \mu_0 \\ \mu_1 \\ \vdots \\ \mu_k \end{bmatrix}, \begin{bmatrix} \sigma_0^2 & \sigma_{01} & \cdots & \sigma_{0k} \\ \sigma_{01} & \sigma_1^2 & \cdots & \sigma_{1k} \\ \vdots & \vdots & \ddots & \vdots \\ \sigma_{0k} & \sigma_{1k} & \cdots & \sigma_k^2 \end{bmatrix} \end{pmatrix}$$

Jointly distributed random effects

Jointly distributed random effects

Independent

$$S_{ik} \sim \text{Norm}(\mu_{ik}, \sigma)$$

$$\mu_{ik} = \beta_{0k} + \beta_{1k}Age_i$$

$$\beta_{0k} = \gamma_{00} + \eta_{0k}$$

$$\beta_{1k} = \gamma_{10} + \eta_{1k}$$

$$\eta_{0k} \sim \mathsf{Norm}(0, \phi_0)$$
 $\eta_{1k} \sim \mathsf{Norm}(0, \phi_1)$

$$\eta_{1k} \sim \mathsf{Norm}(0, \phi_1)$$

Joint

$$S_{ik} \sim \text{Norm}(\mu_{ik}, \sigma)$$

$$\mu_{ik} = \beta_{0k} + \beta_{1k} Age_i$$

$$\beta_{0k} = \gamma_{00} + \eta_{0k}$$

$$\beta_{1k}=\gamma_{10}+\eta_{1k}$$

$$\begin{bmatrix} \eta_{0k} \\ \eta_{1k} \end{bmatrix} \sim \mathsf{MVNorm} \left(\begin{bmatrix} 0 \\ 0 \end{bmatrix}, \Phi \right)$$

(Fixed priors omitted)

Estimates

$$S_{ik} \sim \text{Norm}(\mu_{ik}, \sigma)$$
 $\mu_{ik} = \beta_{0k} + \beta_{1k} Age_i$

$$eta_{0k} = \gamma_{00} + \eta_{0k}$$
 $eta_{1k} = \gamma_{10} + \eta_{1k}$

$$\begin{bmatrix} \eta_{0k} \\ \eta_{1k} \end{bmatrix} \sim \text{MVNorm} \left(\begin{bmatrix} 0 \\ 0 \end{bmatrix}, \Phi \right)$$

$$E(\gamma_{00}|D) = 521.63$$
 $E(\gamma_{10}|D) = -5.55$
 $E(\sigma|D) = 46.96$
 $E(\Phi|D) = \begin{bmatrix} 28.68 & -4.50 \\ -4.50 & 2.71 \end{bmatrix}$

Covariance estimates indicate a relationship between classroomspecific intercepts and classroom-specific age effects

Class-level estimates

Random effects by classroom

Class-level predictions

Random effects by classroom

Specifying formulas in R

Two representations of MLMs

Hierarchical

$$S_{ik} \sim ext{Norm}(\mu_{ik}, \sigma)$$
 $\mu_{ik} = eta_{0k} + eta_{1k} Age_i$

$$eta_{0k} = \gamma_{00} + \eta_{0k}$$
 $eta_{1k} = \gamma_{10} + \eta_{1k}$

Expanded

$$S_{ik} \sim \mathsf{Norm}(\mu_{ik}, \sigma)$$
 $\mu_{ik} = (\gamma_{00} + \eta_{0k}) + (\gamma_{10} + \eta_{1k}) \mathsf{Age}_{ik}$
 β_{0k}
 β_{1k}

Two representations of MLMs

Hierarchical

$$S_{ik} \sim \text{Norm}(\mu_{ik}, \sigma)$$
 $\mu_{ik} = eta_{0k} + eta_{1k} Age_i$

$$eta_{0k} = \gamma_{00} + \eta_{0k}$$
 $eta_{1k} = \gamma_{10} + \eta_{1k}$

Expanded

$$S_{ik} \sim ext{Norm}(\mu_{ik}, \sigma)$$
 $\mu_{ik} = (\gamma_{00} + \eta_{0k}) + (\gamma_{10} + \eta_{1k}) Age_i$

$$S_{ik} = \gamma_{00} + \eta_{0k} + \gamma_{10}Age_i + \eta_{1k}Age_i + \varepsilon_i$$

This term interacts a covariate (Age_i) with an error term (η_{1k})

Expanded notation

"Fixed" effects

Explained variation in outcome variable.

Describes the way that outcome and predictor variables co-vary.

$$S_{ik} = \gamma_{00} + \gamma_{10} Age_i + \eta_{0k} + \eta_{1k} Age_i + \varepsilon_i$$

"Random" effects

Unexplained variation in outcome variable.

Described in terms of individual variability and different types of group variability.

The "formula" notation we've been using in brms is used in other R packages like the frequentist "linear mixed effects" package lme4. (extension of syntax for standard regressions)

$$S_{ik} = \gamma_{00} + \gamma_{10} Age_i + \eta_{0k} + \eta_{1k} Age_i + \varepsilon_i$$

Outcome variable

$$S_{ik} = \gamma_{00} + \gamma_{10} Age_i + \eta_{0k} + \eta_{1k} Age_i + \varepsilon_i$$

Global intercept (included automatically)

$$S_{ik} = \gamma_{00} + \gamma_{10} Age_i + \eta_{0k} + \eta_{1k} Age_i + \varepsilon_i$$

"Fixed effects" covariates are included as usual

$$S_{ik} = \gamma_{00} + \gamma_{10} Age_i + \eta_{0k} + \eta_{1k} Age_i + \varepsilon_i$$

Random effects use pipe notation ()

$$S_{ik} = \gamma_{00} + \gamma_{10} Age_i +$$

 $\eta_{0k} + \eta_{1k} Age_i + \varepsilon_i$

Grouping elements after the 'pipe' (" | ")

$$S_{ik} = \gamma_{00} + \gamma_{10} Age_i + \eta_{0k} + \eta_{1k} Age_i + \varepsilon_i$$

Random intercepts indicated with constant (1)

$$S_{ik} = \gamma_{00} + \gamma_{10} Age_i + \eta_{0k} + \eta_{1k} Age_i + \varepsilon_i$$

Random-slope variables included in grouping expression

$$S_{ik} = \gamma_{00} + \gamma_{10}Age_i + \eta_{0k} + \eta_{1k}Age_i + \varepsilon_i$$