Agenda |1. Roadmap

2. Learning from categories
using pooled and unpooled
models

3. Partial pooling
4. Specifying nested models
5. Indexing in models in R



D—The course so far

1. Redefining linear
regression in a
Bayesian framework

Outcome as draws from a

probability distribution

Y; ~ Norm(y;, o)
up = Xip

Center of that distribution
modeled as linear

combination of predictors




Roadmap—the course so far

2. Dealing with discrete
outcome variables
using GLM

Changing the

outcome distribution
to fit the data

Y; ~ Pois(A))
log(A;) = X;B

Using link functions to map

linear combination of predictors
to an appropriate scale




Roadmap—the course so far

3. Dealing with structured
predictors using
hierarchical linear
models

Y, ~ Norm (y;, 0)

Adding structure to the linear

model to account for relationships
between observations




Framing the problem

Student performance on a
standardized test

Each student has a score, which we can
model using characteristics of the student,
their school, etc.




Framing the problem

Student performance ona Students’ performance is

standardized test not independent

Each student has a score, which we can Students in the same classroom share many
model using characteristics of the student, relevant characteristics (teacher, schoal,
their school, etc. funding, classroom environment, etc.)
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Tennessee SITAR stud

Sample | 69 students in 16 grade-one classrooms
from Tennessee schools in 1986

Outcome | ‘Standardized’ reading score on Stanford
Achievement Test (SAT)
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Sample | 69 students in 16 grade-one classrooms
from Tennessee schools in 1986

Outcome | ‘Standardized’ reading score on Stanford
Achievement Test (SAT)
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omplete poolinc

All variation attributed to

global standard deviation o

Strategy 1| S ~ Norm(y;, o)
(complete pooling)

Ignore hierarchical structure of
data and pool all students’ students
scores together.

— a

Single average score a for all

a ~ Norm(500, 100)
o ~ Unif(0, 100)

90% credible
Mean interval

a 520.54 508.46 532.56

O 61.02 52.49 69.55

I I Ig I I
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Mean reading score (posterior density) ©




Indicator

variables
(2 classrooms)

Fixed

effects
(2 classrooms)

Hi =

Y; ~ Norm(u;, o)
Hi = a+ X

Y; ~ Norm(y;, o)

0) =a
1) =a+p

Incorporaring cateqgories

Pick a reference category and
construct indicator variables
for all other categories.

Intercept a captures reference
mean, other means measured
as difference from reference.

Can be fit with OLS in
standard matrix specification
of linear regression.

Omit global mean a and give
each category its own mean
Ak.

Numerically identical to
indicator variables, but harder
to specify computationally.



Standard deviation o
explains variation around
each ax

Strategy 2| Sk ~ Norm(u, o)
(no pooling) U = a

Include a separate parameter for Each classroom k has its own
each classroom’s average score average score Qg
(fixed effects).

Qy ~ Norm(500, 100) Variability in ax

. accounts for some
o~ Unlf(O, 100) Inter-student

variation

400 500 600 700
Mean reading score (posterior density)



Partial poolinc

Strategy 3| Sk ~ Norm(., o)
(partial pooling) T

Include a separate parameter for

each classroom’s average score, own average score Ak
but model those averages as
random draws from a normal

distribution with unknown mean| dk ~~ NOl’m()/, 17)
and standard deviation.

Each classroom k still has its

The prior distribution
for classroom

averages is estimated
from the data

o ~ Unif(0,100)
y ~ Norm(500, 100)
n ~ Unif(0,100)



000IlINg versus partial poolinc

No pooling
Sik ~ Norm(u,, o)

M, = Qg

a, ~ Norm(500, 100)
o ~ Unif(0, 100)

Partial pooling

Sik ~ Norm(u,, o)

Parameters y and n
Hiy — Qg describe ‘typical’
classrooms, allowing
information to be
shared among all of
the ax estimates.

ay ~ Norm(y, n)

o ~ Unif(0,100)
C measures
y ~ Norm(500,100)  |Ssiprisin

n ~ Unif(0, 100)

N measures

variability between
all classrooms




Partial poolinc

Sik ~ Norm(uy., o) 90% credible
Mean interval

Hiy — Qg
0) 50.80 42.73 58.21

V 52395 50352 54522

a, ~ Norm(y, n)
n 39.78 2290 59.29

o ~ Unif(0,100) A1 49293 461.80 526.99
y ~ Norm(500, 100) a2 47253 441.40 503.23

n ~ Unif(0,100)

aA16 525.66 481.70 569.47




Partial poolinc

Classes
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Partial poolinc

“Shrinkage”
g —— Partial pooling ——e—
c_% +— No pooling .
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Complete pooling

Disregards nested
evels

Pools all data into
same group

Precise estimate of
mean

* Underfit:

Errs systematically in
prediction

WAIC: 767.0
Eff. Param: 1.7

Partial pooling
(random effects)

« Group-level estimates

In population context

* Mutual distribution

allows information
sharing

- Small groups take

cues from the rest of

the groups

- “Just right” fit:

Optimal balance of
information pooling

WAIC: 751.0
Eff. Param: 12.5

No pooling
(fixed effects)

* Independent estimate
for each group

* No information shared
between groups

* Imprecise estimates
for smaller groups

- Overfit:
Does poorly in out-of-
sample prediction

WAIC: 754 .4
Eff. Param: 15.6
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Tales (1918) by Flora Annie Steel,
illustrated by Arthur Rackham
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