SOCI 620

- Agenda
 1. Roadmap
 2. Learning from categories using pooled and unpooled models

 - 3. Partial pooling4. Specifying nested models5. Indexing in models in R

Roadmap—the course so far

1. Redefining linear regression in a Bayesian framework

Outcome as draws from a probability distribution

$$Y_i \sim \text{Norm}(\mu_i, \sigma)$$

$$\mu_i = X_i \beta$$

Center of that distribution modeled as linear combination of predictors

Roadmap—the course so far

- 1. Redefining linear regression in a Bayesian framework
- 2. Dealing with discrete outcome variables using GLM

Using link functions to map linear combination of predictors to an appropriate scale

Roadmap—the course so far

- 1. Redefining linear regression in a Bayesian framework
- 2. Dealing with discrete outcome variables using GLM
- 3. Dealing with structured predictors using hierarchical linear models

Adding structure to the linear model to account for relationships between observations

Framing the problem

Student performance on a standardized test

Each student has a score, which we can model using characteristics of the student, their school, etc.

Framing the problem

Student performance on a standardized test

Each student has a score, which we can model using characteristics of the student, their school, etc.

Students' performance is not independent

Students in the same classroom share many relevant characteristics (teacher, school, funding, classroom environment, etc.)

Tennessee STAR study

Sample

69 students in 16 grade-one classrooms from Tennessee schools in 1986

Outcome

'Standardized' reading score on Stanford Achievement Test (SAT)

Sample 69 students in 16 grade-one classrooms from Tennessee schools in 1986

Outcome

'Standardized' reading score on Stanford Achievement Test (SAT)

Complete pooling

All variation attributed to global standard deviation σ

(complete pooling)

Ignore hierarchical structure of data and pool all students' scores together.

Strategy 1
$$S_i \sim \text{Norm}(\mu_i, \dot{\sigma})$$

$$\mu_i = a \blacktriangleleft$$

Single average score α for all students

$$a \sim \text{Norm}(500, 100)$$
 $\sigma \sim \text{Unif}(0, 100)$

$$\sigma \sim \mathsf{Unif}(\mathsf{0},\mathsf{100})$$

	90% credible	
Mean	interval	
a 520.54	508.46 532.56	
σ 61.02	52.49 69.55	

Incorporating categories

Indicator variables

(2 classrooms)

$$Y_i \sim \text{Norm}(\mu_i, \sigma)$$

$$\mu_i = \alpha + \beta X_i$$

$$E(Y_i|X_i=0)=\alpha$$

$$E(Y_i|X_i=1)=\alpha+\beta$$

Pick a reference category and construct indicator variables for all other categories.

Intercept a captures reference mean, other means measured as difference from reference.

Can be fit with OLS in standard matrix specification of linear regression.

Fixed effects (2 classrooms)

$$Y_i \sim \text{Norm}(\mu_i, \sigma)$$

$$\mu_i = \begin{cases} a_0 & \text{if } X_i = 0 \\ a_1 & \text{if } X_i = 1 \end{cases}$$

Omit global mean α and give each category its own mean a_k .

Numerically identical to indicator variables, but harder to specify computationally.

$$E(Y_i|X_i=0)=a_0$$
$$E(Y_i|X_i=1)=a_1$$

$$E(Y_i|X_i=1)=a_1$$

No pooling

Standard deviation σ explains variation around each a_k

Strategy 2 $S_{ik} \sim \text{Norm}(\mu_{ik}, \sigma)$ (no pooling) $\mu_{ik} = a_k$

Include a separate parameter for each classroom's average score (fixed effects).

$$S_{ik} \sim \mathsf{Norm}(\mu_{ik}, \sigma)$$

$$\mu_{ik} = a_k \leftarrow$$

Each classroom *k* has its own average score a_k

$$a_k \sim \text{Norm}(500, 100) \blacktriangleleft$$
 $\sigma \sim \text{Unif}(0, 100)$

Variability in a_k accounts for some inter-student variation

Strategy 3 (partial pooling)

Include a separate parameter for each classroom's average score, but model those averages as random draws from a normal distribution with *unknown* mean and standard deviation.

$$S_{ik} \sim \mathrm{Norm}(\mu_{ik}, \sigma)$$

$$\mu_{ik} = a_k \blacktriangleleft$$
Each classroom k still has its own average score a_k

The prior distribution for classroom averages is estimated from the data
$$\sigma \sim \mathsf{Unif}(0,100)$$

$$\gamma \sim \mathsf{Norm}(500,100)$$

$$\eta \sim \mathsf{Unif}(0,100)$$

 $a_k \sim \text{Norm}(\gamma, \eta) \blacktriangleleft$

No pooling versus partial pooling

No pooling

$$S_{ik} \sim \text{Norm}(\mu_{ik}, \sigma)$$

$$\mu_{ik} = a_k$$

$$a_k \sim \text{Norm}(500, 100)$$

$$\sigma \sim \mathsf{Unif}(0, 100)$$

Partial pooling

$$S_{ik} \sim \text{Norm}(\mu_{ik}, \sigma)$$

$$\mu_{ik} = a_k$$

Parameters γ and η describe 'typical' classrooms, allowing information to be shared among all of the α_k estimates.

$$a_k \sim \text{Norm}(\gamma, \eta)$$

$$\sigma \sim \text{Unif}(0, 100) \blacktriangleleft$$

 $\gamma \sim \text{Norm}(500, 100)$

 $\eta \sim \text{Unif}(0, 100)$

σ measures variability within each classroom

η measures variability between all classrooms

$$S_{ik} \sim \operatorname{Norm}(\mu_{ik}, \sigma)$$
 $\mu_{ik} = a_k$
 $a_k \sim \operatorname{Norm}(\gamma, \eta)$
 $\sigma \sim \operatorname{Unif}(0, 100)$
 $\gamma \sim \operatorname{Norm}(500, 100)$
 $\eta \sim \operatorname{Unif}(0, 100)$

	90% credible		
	Mean	interval	
σ	50.80	42.73	58.21
γ	523.95	503.52	545.22
η	39.78	22.90	59.29
a ₁	492.93	461.80	526.99
a_2	472.53	441.40	503.23
•	•	•	•
a 16	525.66	481.70	569.47

Summary

Complete pooling

- Disregards nested levels
- Pools all data into same group
- Precise estimate of mean
- Underfit:
 Errs systematically in prediction

WAIC: 767.0

Eff. Param: 1.7

Partial pooling (random effects)

- Group-level estimates in population context
- Mutual distribution allows information sharing
- Small groups take cues from the rest of the groups
- "Just right" fit:
 Optimal balance of information pooling

WAIC: 751.0

Eff. Param: 12.5

No pooling (fixed effects)

- Independent estimate for each group
- No information shared between groups
- Imprecise estimates for smaller groups
- Overfit:
 Does poorly in out-of-sample prediction

WAIC: 754.4

Eff. Param: 15.6

Summary

From English Fairy Tales (1918) by Flora Annie Steel, illustrated by Arthur Rackham