<u>SOCI 620: QUANTITATIVE METHODS 2</u>

Expanding on the **Poisson regression**

Agenda 1. Administrative

- 2. Interpreting coefficients from **Poisson regressions**
- 3. "Over-dispersed" Poisson regressions
- 4. Zero-inflated Poisson regressions
- 5. Hands on:
 - Poisson models in R

Interpreting Poisson coefficients

INTERPRETING COEFFICIENTS

$$H_i \sim ext{Pois}(\lambda_i) \ \log(\lambda_i) = lpha + eta_M M_i + eta_G G_i$$

 $egin{aligned} lpha &\sim \operatorname{Norm}(3,1) \ eta_M &\sim \operatorname{Norm}(0,0.5) \ eta_G &\sim \operatorname{Norm}(0,0.3) \end{aligned}$

Mean		exp(Mean)	
α	0.27	1.32	
β _M 1.11		3.05	
β _G	-0.14	0.87	

α (baseline)

A student who is not a boy $(M_i = 0)$ and is in grade 10 (G_i = 0) is predicted to play about 1.32 hours of games per week.

β_M (gender)

Boys ($M_i = 1$) are expected to spend about 3.05 times more time than non-boys (M_i = 0) playing games.

β_G (grade)

 A one-year increase in grade is associated with playing 0.87 times as much. This is a decrease of 13% each year.

Overdispersion

To illustrate, consider the simpler model with only gender as a predictor:

 $H_i \sim \mathrm{Pois}(\lambda_i) \ \log(\lambda_i) = lpha + eta M_i$

 $lpha \sim \mathrm{Norm}(3, 1.0) \ eta \sim \mathrm{Norm}(0, 0.7)$

	Mean	exp(Mean)
α	0.38	1.46
β	1.10	3.00

Gamma-Poisson regression:

 $egin{aligned} H_i &\sim \mathrm{Pois}(\lambda_i)\ \lambda_i &\sim \mathrm{Gamma}(\mu_i, heta)\ \log(\mu_i) &= lpha + eta M_i \end{aligned}$

 $egin{aligned} lpha &\sim \operatorname{Norm}(3, 1.0) \ eta &\sim \operatorname{Norm}(0, 0.7) \ heta &\sim \operatorname{Unif}(0, 20) \end{aligned}$

AKA negative binomial AKA over-dispersed Poisson

Extra "dispersion" from gamma Two students who look identical based on covariates can have different Poisson rates λ_i .

— One more prior

Gamma-Poisson regression:

 $egin{aligned} H_i &\sim ext{Pois}(\lambda_i)\ \lambda_i &\sim ext{Gamma}(\mu_i, heta)\ \log(\mu_i) &= lpha + eta M_i \end{aligned} \ lpha &\sim ext{Norm}(3,1.0)\ eta &\sim ext{Norm}(0,0.7)\ heta &\sim ext{Unif}(0,20) \end{aligned}$

Gamma-Poisson and negative-binomial regressions are the same:

 $H_i \sim \mathrm{Pois}(\lambda_i)$ $\lambda_i \sim \text{Gamma}(\mu_i, \theta) \qquad \log(\lambda_i) = \alpha + \beta M_i$ $\log(\mu_i) = \alpha + \beta M_i$

 $H_i \sim \mathrm{NegBin}(\lambda_i, heta)$

"Negative binomial regression" is the typical terminology

$$egin{aligned} H_i &\sim \mathrm{NegBin}(\lambda_i, heta)\ \log(\lambda_i) &= lpha + eta M_i \ &lpha &\sim \mathrm{Norm}(3, 1.0)\ eta &\sim \mathrm{Norm}(0, 0.7)\ heta &\sim \mathrm{Unif}(0, 20) \end{aligned}$$

	Mean	95% CI	exp(Mean)
α	0.38	(0.32, 0.45)	1.47
β	1.09	(1.01, 1.18)	2.99
θ	0.35	(0.33, 0.37)	

Zero inflation

Outcome variable is the result of *one of two processes*:

Either the student is structurally constrained to play zero hours per week–e.g. they do not own a game console ($C_i = 1$)

Or the student is able to play games and does so at a rate λ_i ($C_i = 0$)

$H_iiggl\{egin{array}{cc} = 0 & ext{if } C_i = 1 \ \sim ext{Pois}(\lambda_i) & ext{if } C_i = 0 \end{array}$

Each student's probability of not owning a console is modeled with p_i

 $H_iigg\{egin{array}{ll} = 0 & ext{if } C_i = 1 \ \sim ext{Pois}(\lambda_i) & ext{if } C_i = 0 \ C_i = ext{Bernoulli}(p_i) \end{array}$

$H_iigg\{egin{array}{ll} = 0 & ext{if } C_i = 1 \ \sim ext{Pois}(\lambda_i) & ext{if } C_i = 0 \ C_i = ext{Bernoulli}(p_i) \end{array}$

The probability p_i is modeled with a linear function of family income

$$\mathrm{logit}(p_i) = lpha_p + eta_p W_i$$

The rate λ_i is modeled with a linear function of gender

$$H_iigg\{egin{array}{ll} = 0 & ext{if } C_i = 1 \ \sim ext{Pois}(\lambda_i) & ext{if } C_i = 0 \ C_i = ext{Bernoulli}(p_i) \end{array}$$

$$egin{aligned} ext{logit}(p_i) &= lpha_p + eta_p W_i \ ext{log}(\lambda_i) &= lpha_\lambda + eta_\lambda M_i \end{aligned}$$

$$H_iigg\{egin{array}{ll} = 0 & ext{if } C_i = 1 \ \sim ext{Pois}(\lambda_i) & ext{if } C_i = 0 \ C_i = ext{Bernoulli}(p_i) \end{array}$$

$$egin{aligned} \log(p_i) &= lpha_p + eta_p W_i \ \log(\lambda_i) &= lpha_\lambda + eta_\lambda M_i \end{aligned}$$

 $egin{aligned} &lpha_p \sim \operatorname{Norm}(0,1)\ &eta_p \sim \operatorname{Norm}(0,2)\ &lpha_\lambda \sim \operatorname{Norm}(3,1)\ &eta_\lambda \sim \operatorname{Norm}(0,0.7) \end{aligned}$

MODEL COMPARISONS

Image credit

Figures by Peter McMahan (<u>source</u> <u>code</u>)

Still from <u>Brazil (1985)</u>

Merchandise from <u>The</u> <u>Nightmare Before</u> <u>Christmas (1993)</u>