<u>SOCI 620: QUANTITATIVE METHODS 2</u>

Parsimony & overfitting

Agenda 1. Logistic with predictors 2. Interpreting coefficients 3. Hands on: Prior predictive simulation in R

Logistic with predictors

COCAINE USE AMONG ADOLESCENTS

З

 $C_i \sim ext{Bernoulli}(p_i) \ \log (p_i) = lpha + eta G_i$

 $lpha \sim \mathrm{Norm}(0, 1.7) \ eta \sim \mathrm{Norm}(0, ??)$

PRIOR PREDICTIVE PLOTS

$egin{aligned} lpha &\sim \operatorname{Norm}(0, 1.7) \ eta &\sim \operatorname{Norm}(0, \mathbf{0.1}) \end{aligned}$

$lpha \sim \mathrm{Norm}(0, 1.7) \ eta \sim \mathrm{Norm}(0, \mathbf{2.0})$

PRIOR PREDICTIVE PLOTS

 $egin{aligned} lpha &\sim \operatorname{Norm}(0, 1.7) \ eta &\sim \operatorname{Norm}(0, \mathbf{0.4}) \end{aligned}$

MODEL ESTIMATES (POSTERIOR)

		Mean	95% C.I.
$C_i \sim \mathrm{Bernoulli}(p_i)$	α	-3.52	(-3.68, -3.46)
$\mathrm{logit}(p_i) = lpha + eta G_i$	β	0.16	(0.08, 0.25)

Interpreting logistic regression coefficients

INTERPRETING COEFFICIENTS

$C_i \sim ext{Bernoulli}(p_i) \ \log (p_i) = lpha + eta G_i$

	Mean	95% C.I.
lpha	-3.52	(-3.68, -3.46)
β	0.16	(0.08, 0.25)

Intercept (α)

E The expected probability of having tried cocaine for a student in grade 9 ($G_i = 0$) is:

logit⁻¹(-3.52) = 0.029 = 2.9%

E The probability that a student in grade 9 has tried cocaine is **most likely between 2.5% and 3.4%** (95% CI).

Coefficient (β)

- E Coefficients are not so simple
- E Some options:
 - Odds ratio
 - **Selected cases**
 - Average marginal effect (AME) Posterior visualization

FERPRETING COEFFICIENTS

Odds ratio The odds ratio is the proportional change in the odds of the outcome associated with a one-unit change in the predictor.

$$\left|rac{\left(rac{p^{G=1}}{1-p^{G=1}}
ight)}{\left(rac{p^{G=0}}{1-p^{G=0}}
ight)}=\exp(eta)$$

$$egin{aligned} \operatorname{logit}(p) &= lpha + eta G \ \log\left(rac{p}{1-p}
ight) &= lpha + eta G \ rac{p}{1-p} &= \exp(lpha + eta G) \ rac{p}{1-p} &= \exp(lpha) imes \exp(eta G) \end{aligned}$$

"For every unit increase in the covariate, the expected odds of the outcome is multiplied by $\exp(\beta)''$

"For every grade a student completes, the expected **odds** of having tried cocaine is multiplied by 13% (multiplied by 1.13)"

ODDS RATIOS ARE UNINTUITIVE

The probability scale of the odds ratio

INTERPRETING WITHOUT ODDS RATIOS 11

Cases An average 7th grade student has about a 2.1% (1.6%, 2.8%) chance of having tried cocaine, while for an average 12th grader, that probability is about 4.7% (3.7%, 5.7%)

Average Among the students in our sample, completing a grade is predicted to increase the probability of having tried cocaine by about 17.3% (17.1%, 17.4%) on average

Multiplicative on posterior probability

ADDING COVARIATES

 $C_i \sim ext{Bernoulli}(p_i) \ ext{logit}(p_i) = lpha + eta_G G_i + eta_D D_i + eta_W W_i$

G_i: Grade in school (centered at grade 9)

D_i: Delinquency (standardized)

W_i: White (indicator)

 $lpha \sim \mathrm{Norm}(0, 1.7) \ eta_G, eta_D, eta_W \sim \mathrm{Norm}(0, 0.4)$

	Mean	95% C.I.
lpha	-4.48	(-4.81, -4.16)
eta_G	0.22	(0.13, 0.32)
β_D	0.89	(0.78, 1.00)
eta_W	0.62	(0.32, 0.94)