SOCI 620: QUANTITATIVE METHODS 2

Agenda

Parsimony & overfitting

1. Administrative

- 2. Cocaine use among adolescents
- 3. The inverse logit transformation
 - 4. Starting simple: intercept-only logistic regression
- 5. Hands on:
 - Estimating logistic regression using MCMC in R

Cocaine use among adolescents

(The trouble with binary outcomes)

COCAINE USE AMONG ADOLESCENTS

Why not use a standard linear regression?
$$\begin{vmatrix} C_i \sim \operatorname{Norm}(\mu_i, \sigma) \\ \mu_i = lpha + eta G_i \end{vmatrix}$$

GAUSSIAN MODEL FOR BINARY DATA?

etation Under some circumstances, results can be interpreted as proportions or probabilities, but this can lead to predicted values less than zero or more than one.

GAUSSIAN MODEL FOR BINARY DATA?

5

Why not use a standard linear regression?

GAUSSIAN VS. BERNOULLI

LOGISTIC REGRESSION MODEL

Replace Norm(μ , σ) with Bernoulli(*p*) $C_i \sim \operatorname{Bernoulli}(p_i)$ $f(p_i) = lpha + eta G_i$ But now we need a "link" function With normal distribution, μ could take on any value, but p is restricted to [0,1]

The inverse logit transformation

INVERSE LOGIT TRANSFORMATION

Logit function $logit(p) = log\left(\frac{p}{1-p}\right)$ Takes values between 0 and 1, and turns them into values between -∞ and ∞.

Inverse logit function (aka 'logistic')

$$\operatorname{logit}^{-1}(x) = \operatorname{logistic}(x) = rac{e^x}{e^x + 1} = rac{1}{1 + e^{-x}}$$

Takes values between $-\infty$ and ∞ , and turns them into values between 0 and 1.

 $C_i \sim ext{Bernoulli}(p_i) \ \log (p_i) = lpha + eta G_i$

 $igoplus egin{array}{ll} C_i \sim ext{Bernoulli}(p_i) \ p_i = ext{logit}^{-1}(lpha + eta G_i) \end{array}$

INVERSE LOGIT TRANSFORMATION

INVERSE LOGIT TRANSFORMATION

 $C_i \sim ext{Bernoulli}(p_i) \ \log (p_i) = lpha + eta G_i$

X	$logit^{-1}(x)$
-2	0.119
-0.5	0.119
0	0.119
0.5	0.119
2	0.119

INTERCEPT-ONLY LOGISTIC MODEL

$C_i \sim ext{Bernoulli}(p_i) \ ext{logit}(p_i) = lpha$

12

Why this model instead of the model we built in the first week of class? $\operatorname{Count}(C) \sim \operatorname{Binom}(n,p)$ Logistic regression allows us to include explanatory covariates.

 $C_i \sim ext{Bernoulli}(p_i) \ ext{logit}(p_i) = lpha$

 $lpha \sim \operatorname{Norm}(0,???)$

INTERCEPT-ONLY LOGISTIC REGRESSION18

 $C_i \sim ext{Bernoulli}(p_i) \ ext{logit}(p_i) = lpha$

 $lpha \sim \mathrm{Norm}(0, 1.7)$

	Median	95% C.I.
α	-3.34	(-3.48, -3.20)
$\exp(lpha)$	0.036	(0.031, 0.041)
$\mathrm{logit}^{-1}(lpha)$	0.034	(0.030, 0.039)