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A-priori Simpler models are easier to interpret or Pr(Ml)
justification | more compelling on their own 751
PI‘(MQ)
Model | Simpler models rely less on coincidence Pr(D|M;)
likelihood | to produce specific data > 1
justification Pr(D[M>)
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ASSESSING FIT 7

Linear Quadratic
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W; = o+ B1T; pi = o+ BT + BT

A quadratic model seems like it might be a better fit.

But how can we measure that?



ASSESSING FIT: DEVIANCE

Prob(data|6)Prob(6)

Prob(f|data) =

Prob(data)




ASSESSING FIT: DEVIANCE

Deviance (D) is minus two times the log likelihood of the data, given
the model and a point estimate for the model parameters (6):

For clarity, we use this simpler definition.

A " Note: definition of devi
_D — —2 log (Prob(data|0)) reqcl)Jti?e:g%@lg‘ganris%r:ntglgqs%tur(?a\{tgdn’cgodel.




ASSESSING FIT: DEVIANCE

Linear
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Cubic D=1568.76
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Quadratic

D=1595.19

Order-10 polynomial
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Underfit

: Predictions err in systematic ways

: Misses meaningful patterns in the
relationship between predictor(s)
and outcome

Overfit

: Takes random variation to be
systematic

: Predicts cases in the sample well,
but tends to predict new data very
poorly
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TEST AND TRAINING DATA

Training data £
Fit the model on a g7
subset of the data & -
(e.g.50%) o -
T T ; ;
Mean temperature(standardized)
N D=266.23
Test data £
Asses model fit on £ .
the held-out portion g~
of the data o -

1 1 1 1
-2 -1 0 1
Mean temperature(standardized)



AKAIKE INFORMATION CRITERION (AIC)

D = —2log (Pr(data\é))

AIC = —2log (Pr(data|é)) 2k
— D+ 2k

Interpretation 1 | Penalize deviance score for each added
parameter by some ‘reasonable’ value.

Interpretation 2 | Model the average difference in deviance
between training and test data.

Assumptions:
i Sample size > number of parameters (k)

i Posterior is approximately (multivariate) normal



INFORMATION CRITERIA

Criterion

Akaike
Information
Criterion (AIC)

“Bayesian”
Information
Criterion (BIC)

Deviance
Information
Criterion (DIC)

Widely
Applicable

Information
Criterion (WAIC)
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Fit Penalty
Deviance at the
MAP/ML estimate
(usually) H#parameters

Deviance at the Hparameters x

MAP/ML estimate log(#observations)
“Effective”

Deviance averaged H#Hparameters
across posterior (posterior)
Deviance averaged "Effective”
across posterior and H#Hparameters

observations (posterior & obs.)



USING INFORMATION CRITERIA

Strategy 1
Pick the model with the lowest value

16

WAIC(M,) = 209.0; WAIC(M,) = 2081
- M, is the winner

Strategy 2
Report several models along with values

Multi-model table showing estimates for different
combinations of coefficients, along with WAIC

Strategy 3
Average predictions across models

Simultaneous posterior predictions of new data
from all models, weighted by WAIC




BUILDING MODELS 17

Considerations when building a model
(i.e. choosing covariates)

Theoretical relevance
i Independent variables chosen to address
theoretical concerns

: E.g. test theoretical predictions, account for
theorized connections

Causal inference
i Independent variables chosen to make robust
causal claims

: Worry about including confounders, omitting
colliders, and thinking through role of moderating
and mediating variables

Information —)Predlctlve accuracy

?r'tfﬁ'a =l i Independent variables chosen to maximize

Or ~1IS predictive power

: Accuracy of out-of-sample predictions;
Interpretation of models with many moving parts
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