SOCI 620: QUANTITATIVE METHODS 2

Agenda Parsimony & overfitting

Agenda 1. Administrative

- 2. Parsimony & Occam's Razor
- 3. Overfitting vs. underfitting
 - 4. Test & training data
 - 5. Information criteria
 - 6. Hands on:
 - Comparing information
 - criteria in R

Parsimony & Occam's razor

OCCAM'S RAZOR

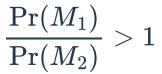
How many buildings?

OCCAM'S RAZOR

*M*₁: Four buildings

 $rac{\Pr(M_1|D)}{\Pr(M_2|D)} = rac{\Pr(M_1)}{\Pr(M_2)} rac{\Pr(D|M_1)}{\Pr(D|M_2)}$

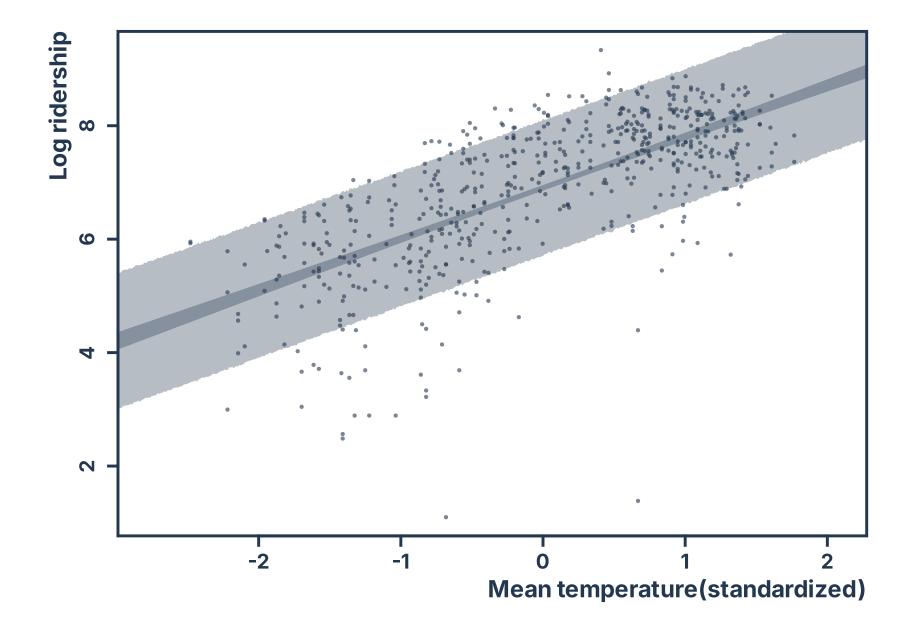
A-priori
justificationSimpler models are easier to interpret or
more compelling on their ownIModel
likelihood
justificationSimpler models rely less on coincidence
to produce specific dataPriority



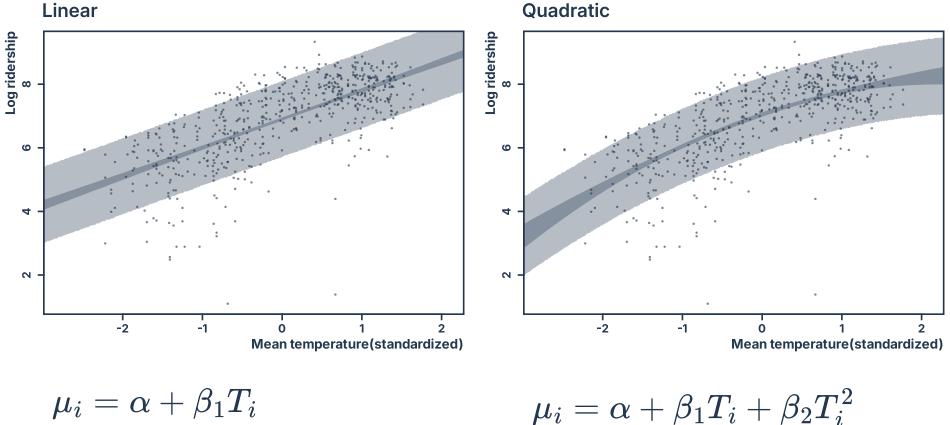
 $rac{\Pr(D|M_1)}{\Pr(D|M_2)} > 1$

Assessing fit

ASSESSING FIT



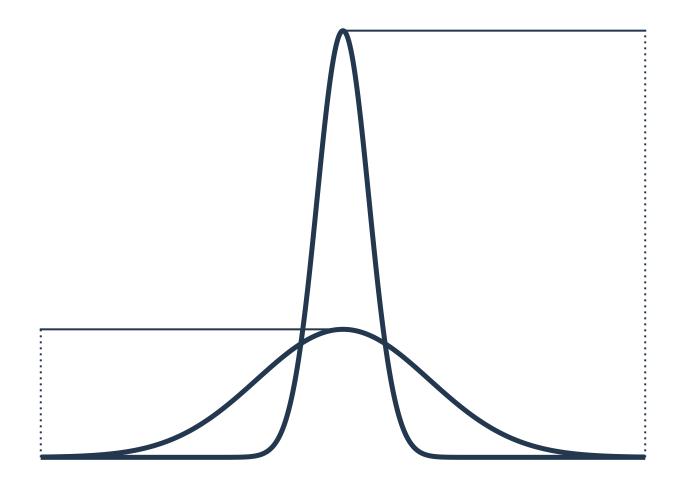
ASSESSING FIT



A quadratic model seems like it might be a better fit.

But how can we measure that?

ASSESSING FIT: DEVIANCE

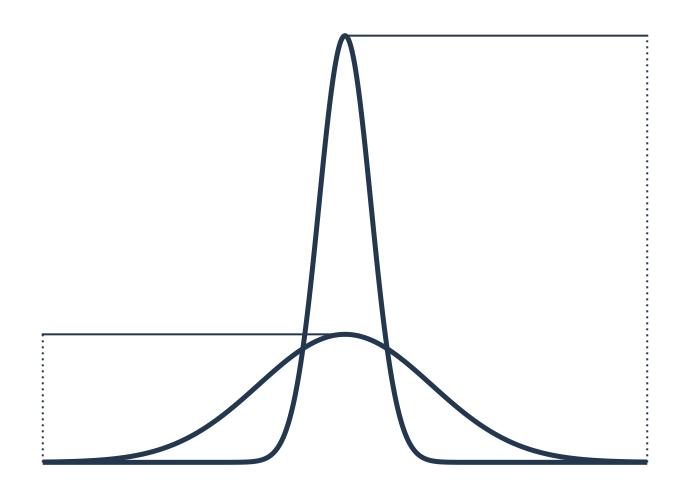


ASSESSING FIT: DEVIANCE

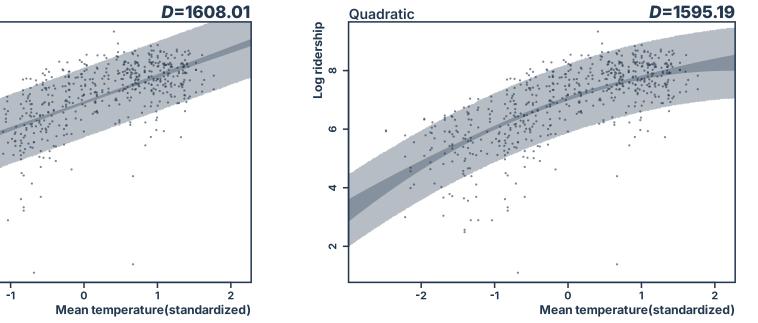
Deviance $(D)^*$ is minus two times the log likelihood of the data, given the model and a point estimate for the model parameters ($\hat{\theta}$):

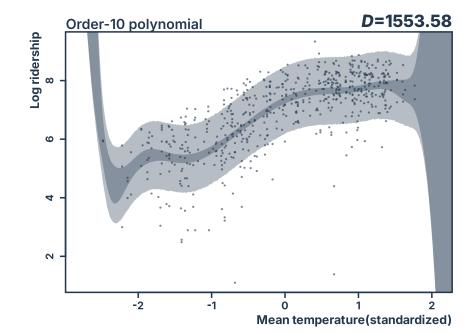
$$D = -2\log\left(ext{Prob}(ext{data}|\hat{ heta})
ight)$$

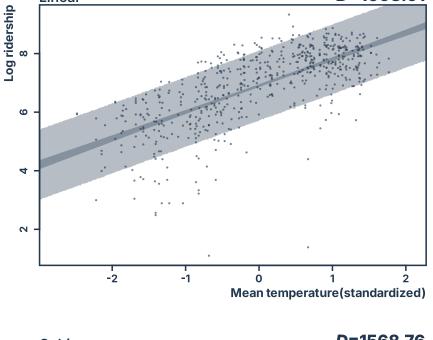
* Note: a common definition of deviance requires a comparison to a 'saturated' model. For clarity, we use this simpler definition.

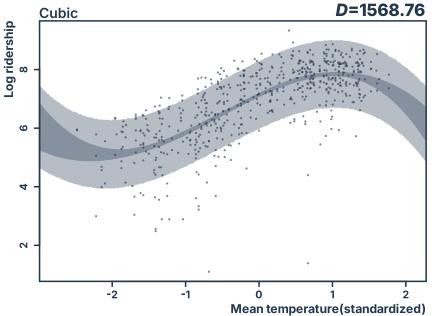


SESSING FIT: DEVIA CE Linear

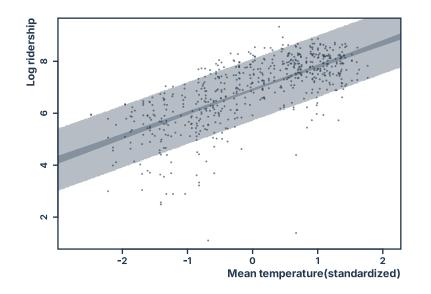






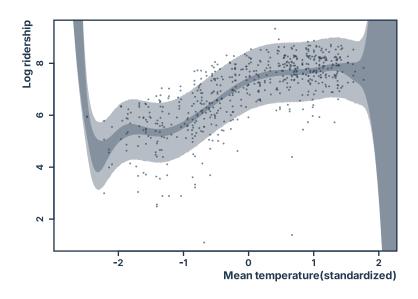


GOODNESS OF FIT



Underfit

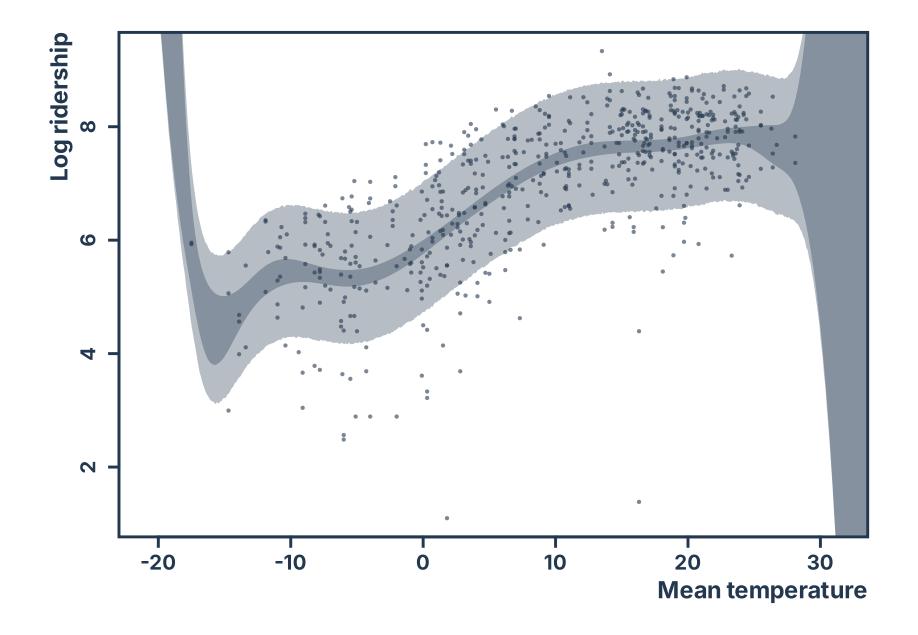
- E Predictions err in systematic ways
- Misses meaningful patterns in the relationship between predictor(s) and outcome



Overfit

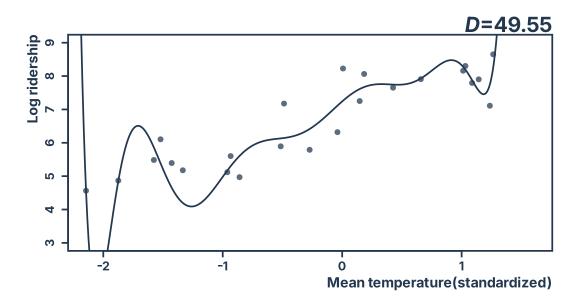
- E Takes random variation to be systematic
- Predicts cases in the sample well, but tends to predict new data very poorly

OVERFITTING



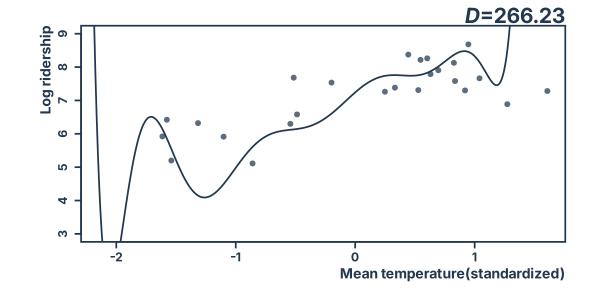
TEST AND TRAINING DATA

Training data Fit the model on a subset of the data (e.g. 50%)



Test data

Asses model fit on the held-out portion of the data



AKAIKE INFORMATION CRITERION (AIC) 14

$$D=-2\log\left(\Pr(ext{data}|\hat{ heta})
ight)$$

$$egin{aligned} AIC &= -2\log\left(\Pr(ext{data}|\hat{ heta})
ight) + 2k \ &= D + 2k \end{aligned}$$

Interpretation 1	Penalize deviance score for each added parameter by some 'reasonable' value.	
Interpretation 2	Model the average difference in deviance between training and test data.	
	Assumptions: i Sample size ≫ number of parameters (k) i Posterior is approximately (multivariate) normal	

INFORMATION CRITERIA

Criterion	Fit	Penalty
Akaike Information Criterion (AIC)	Deviance at the MAP/ML estimate (usually)	#parameters
"Bayesian" Information Criterion (BIC)	Deviance at the MAP/ML estimate	#parameters × log(#observations)
Deviance Information Criterion (DIC)	Deviance averaged across posterior	"Effective" #parameters (posterior)
Widely Applicable Information Criterion (WAIC)	Deviance averaged across posterior and observations	"Effective" #parameters (posterior & obs.)

USING INFORMATION CRITERIA

Strategy 1

Pick the model with the lowest value

16

WAIC(M₁) = 209.0; WAIC(M₂) = 208.1 \rightarrow M₂ is the winner

Strategy 2

Report several models along with values

Multi-model table showing estimates for different combinations of coefficients, along with WAIC

Strategy 3

Average predictions across models

Simultaneous posterior predictions of new data from all models, weighted by WAIC

BUILDING MODELS

Considerations when building a model (i.e. choosing covariates)

Theoretical relevance

- Endependent variables chosen to address theoretical concerns
- E.g. test theoretical predictions, account for theorized connections

Causal inference

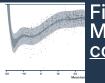
- i Independent variables chosen to make robust causal claims
- Worry about including confounders, omitting colliders, and thinking through role of moderating and mediating variables

Information Predictive accuracy

for this

- Independent variables chosen to maximize predictive power
- Accuracy of out-of-sample predictions; Interpretation of models with many moving parts

Image credit



Figures by Peter McMahan (<u>source</u> <u>code</u>)

David Byrne by Deborah Feingold