SOCI 620: Quantitative methods 2

Parsimony and overfitting

- Jan 31 1. Parsimony and Occam's razor
 - 2. Overfitting and underfitting
 - 3. Illustrating overfitting with test and training data
 - 4. Information criteria as formal measures of (over)fit
 - 5. Comparing criteria in R

Occam's razor

How many buildings?

Occam's razor

*M*₁: Four buildings

*M*₂: Five buildings

$$\frac{\Pr(M_1|D)}{\Pr(M_2|D)} = \frac{\Pr(M_1)}{\Pr(M_2)} \frac{\Pr(D|M_1)}{\Pr(D|M_2)}$$

A priori Simpler models are easier to interpret or more compelling

ModelSimpler models rely less onlikelihoodcoincidence

Assessing fit

Assessing fit

A quadratic model seems like it might be a better fit. But how can we measure that?

Assessing fit

$D = -2\log(\Pr(\hat{\theta}|D))$

Deviance

Goodness of fit

Underfit

Errs in prediction in a systematic way

Misses important aspects of relationship between predictor(s) and outcome

Overfit Takes random variation to be systematic

Predicts cases in the sample well, but tends to predict new data very poorly

Overfitting

Overfitting

Test and training data

TestAssess fit on the otherdatahalf of the data.

Akaike information criterion (AIC)

 $\mathsf{D} = -2\log(\mathsf{Pr}(\mathsf{data}|\theta)\mathsf{Pr}(\theta))$

 $AIC = -2 \log(\Pr(\text{data}|\theta)\Pr(\theta)) + 2k$ = D + 2k

Interpretation 1 Penalize deviance score for each added parameter by some 'reasonable' value.

Interpretation 2 Model the average difference in deviance between training and test data.

Sample size » number of parameters (*k*) Priors have minimal influence (flat or lots of data) Posterior is approximately (multivariate) normal

Akaike information criterion (AIC)

Information criteria

Criterion	Fit	Penalty
Akaike Information Criterion (AIC)	Deviance at MAP estimate (usually)	Number of parameters
"Bayesian" Information Criterion (BIC)	Deviance at MAP estimate	<pre>#parameters times log(#observations)</pre>
Deviance Information Criterion (DIC)	Deviance averaged across posterior	"Effective" #parameters (posterior)
Widely Applicable Information Criterion (WAIC)	Deviance averaged across posterior and observations	"Effective" #parameters (posterior and obs.)

Using information criteria

Strategy 1 Pick the model with the lowest value. WAIC(M_1) = 209.0; WAIC(M_2) = 208.1 M_2 is the winner

Strategy 2 Report several models along with values. Multi-model table showing estimates for different combinations of coefficients, along with WAIC

Strategy 3 Average predictions across models. Simultaneous posterior predictions of new data from all models, weighted by WAIC

Building linear models

Considerations when choosing covariates

Theoretical Independent variables chosen address **relevance** theoretical concerns Test theoretical predictions, account for theorized connections

Causal Independent variables chosen to make inference robust causal claims

Worry about including confounders, omitting colliders, and thinking through role of moderating and mediating variables

accuracy

Information criteria are for this

Predictive Independent variables chosen to maximize predictive power

Accuracy of out-of-sample predictions; Interpretation of models with many moving parts