Jan 31 1. Parsimony and Occam's razor
Parsimony and overfitting
2. Overfitting and underfitting
3. Illustrating overfitting with test and training data
4. Information criteria as formal measures of (over)fit
5. Comparing criteria in R

occam's razor

How many buildings?

M_{1} : Four buildings

M_{2} : Five buildings

$$
\frac{\operatorname{Pr}\left(M_{1} \mid D\right)}{\operatorname{Pr}\left(M_{2} \mid D\right)}=\frac{\operatorname{Pr}\left(M_{1}\right)}{\operatorname{Pr}\left(M_{2}\right)} \frac{\operatorname{Pr}\left(D \mid M_{1}\right)}{\operatorname{Pr}\left(D \mid M_{2}\right)}
$$

A priori Simpler models are easier to interpret or more compelling

$$
\frac{\operatorname{Pr}\left(M_{1}\right)}{\operatorname{Pr}\left(M_{2}\right)}>1
$$

Model Simpler models rely less on likelihood coincidence

$$
\frac{\operatorname{Pr}\left(D \mid M_{1}\right)}{\operatorname{Pr}\left(D \mid M_{2}\right)}>1
$$

Assessing fit

$\mu_{i}=a+\beta_{1}$ Age $_{i}$

$\mu_{i}=a+\beta_{1}$ Age $_{i}+\beta_{2}$ Age $_{i}^{2}$

A quadratic model seems like it might be a better fit. But how can we measure that?

Assessing fit

$\operatorname{Pr}(\theta \mid D)=$
 $\frac{\operatorname{Pr}(D \mid \theta) \operatorname{Pr}(\theta)}{\operatorname{Pr}(D)}$

$$
D=-2 \log (\operatorname{Pr}(\hat{\theta} \mid D))
$$

Deviance

Goodness of fit

Underfit | Errs in prediction in a systematic way

Misses important aspects of relationship between predictor(s) and outcome

Age (standardized)

Takes random variation to be systematic

Predicts cases in the sample well, but tends to predict new data very poorly

overfitting

Order-10 polynomial

rest and training data

Training data

Fit model on half of the data.

Test Assess fit on the other data half of the data.

Akalke information criterion (A|C)

$$
D=-2 \log (\operatorname{Pr}(\text { data } \mid \theta) \operatorname{Pr}(\theta))
$$

$$
\begin{aligned}
\mathrm{AIC} & =-2 \log (\operatorname{Pr}(\text { data } \mid \theta) \operatorname{Pr}(\theta))+2 k \\
& =D+2 k
\end{aligned}
$$

Interpretation 1 Penalize deviance score for each added l parameter by some 'reasonable' value.

Interpretation 2 Model the average difference in deviance between training and test data.
Sample size > number of parameters (k)
Priors have minimal influence (flat or lots of data)
Posterior is approximately (multivariate) normal

information criteria

Criterion Fit Penalty

Akaike Information Criterion (AIC)

Deviance at MAP estimate (usually)

Number of parameters
"Bayesian" Information Criterion (BIC)

Deviance at MAP estimate
\#parameters times log(\#observations)

Deviance Information
Criterion (DIC)

Deviance averaged across posterior
"Effective" \#parameters
(posterior)

Widely
Applicable Deviance averaged Information Criterion (WAIC)
across posterior and observations
"Effective" \#parameters (posterior and obs.)

Using information criteria

Strategy 1 Pick the model with the lowest value. WAIC $\left(M_{1}\right)=209.0 ; \operatorname{WAIC}\left(M_{2}\right)=208.1$ M_{2} is the winner

Strategy 2 Report several models along with values. Multi-model table showing estimates for different combinations of coefficients, along with WAIC

Strategy 3 Average predictions across models. Simultaneous posterior predictions of new data from all models, weighted by WAIC

Bulding linear models

Considerations when choosing covariates

Theoretical relevance

Independent variables chosen address theoretical concerns
Test theoretical predictions, account for theorized connections

Causal Independent variables chosen to make inference robust causal claims Worry about including confounders, omitting colliders, and thinking through role of moderating and mediating variables

Predictive accuracy
Information criteria are

Independent variables chosen to maximize predictive power
Accuracy of out-of-sample predictions; Interpretation of models with many moving parts

