SOCI 620: Quantitative methods 2

Covariates for causal analysis

- Jan 24 | 1. Interacting variables in regression
 - 2. Causal analysis in regression
 - 3. Mediation, moderation, confounding, and collision
 - 4. Building indicator (dummy) variables in R

$$\log(\operatorname{Inc}_i) \sim \operatorname{Norm}(\mu_i, \sigma)$$
 $\mu_i = \alpha + \beta_1 W_i + \beta_2 A_i$
 $\alpha, \beta_1, \beta_2 \sim \operatorname{Norm}(0, 30)$
 $\sigma \sim \operatorname{Unif}(0, 50)$

*W_i*Indicator variable for women

A_i
Indicator variable for respondents over 35 years old

		Std.		
	Mean	Dev.	5%	95%
а	9.87	0.04	9.81	9.94
β_1	-0.48	0.04	-0.55	-0.42
$oldsymbol{eta}_2$	0.70	0.04	0.62	0.77
σ	1.16	0.01	1.14	1.18

 $\beta_1 : \exp(-0.48) \approx 0.62$

(women make about 62% as much as men, on average)

 β_2 : exp(0.70) \approx 2.01

(people over 35 years old make about twice as much as people 35 and under)

$$\log(\operatorname{Inc}_i) \sim \operatorname{Norm}(\mu_i, \sigma)$$
 $\mu_i = \alpha + \beta_1 W_i + \beta_2 A_i + \beta_3 W_i A_i$
 $\alpha, \beta_1, \beta_2, \beta_3 \sim \operatorname{Norm}(0, 30)$
 $\sigma \sim \operatorname{Unif}(0, 50)$
 $W_i A_i$

W_iA_i Interaction between both indicators

	Mean	Std. Dev.	5%	95%
а	9.82	0.05	9.74	9.91
β_1	-0.38	0.07	-0.50	-0.26
$oldsymbol{eta}_2$	0.77	0.06	0.67	0.87
β_3	-0.15	0.09	-1.29	-0.01
σ	1.16	0.01	1.14	1.18

$$\mu_{i} = \alpha + \beta_{1}W_{i} + \beta_{2}A_{i} + \beta_{3}W_{i}A_{i}$$

$$\mu(\leq 35, man) = \alpha$$

$$\mu(\leq 35, woman) = \alpha + \beta_{1}$$

$$\mu(>35, man) = \alpha + \beta_{2}$$

 μ (>35, woman) = $\alpha + \beta_1 + \beta_2 + \beta_3$

	Mean	exp(Mean)
а	9.82	18398.051
β_1	-0.38	0.684
β_2	0.77	2.16
β_3	-0.15	0.861

Interpreting the interaction coefficient β₃

The pay benefit of being over 35 (β_2) is diminished by about 14% for women (β_3).

OR

The pay gap for women (β_1) is exacerbated by about 14% for those over 35 (β_3).

Interacting continuous variables

$$\log(\mathrm{Inc}_i) \sim \mathrm{Norm}(\mu_i, \sigma)$$

$$\mu_i = \alpha + \beta_1 \mathrm{Occ}_i + \beta_2 \mathrm{Age}_i + \beta_3 \mathrm{Occ}_i \mathrm{Age}_i$$

$$\bullet \qquad \bullet$$
 Occupational income index (standardized)
$$\bullet$$
 Age (standardized)

Standardization: Transforming a variable X to so that mean(X)=0 and sd(X)=1

Interacting continuous variables

$$\mu_i = \alpha + \beta_1 \text{Occ}_i +$$

$$\beta_2 \text{Age}_i + \beta_3 \text{Occ}_i \text{Age}_i$$

	Mean	exp(Mean)
а	10.25	28282.542
β_1	0.48	1.616
$oldsymbol{eta}_2$	0.35	1.419
β_3	-0.05	0.951

Interpreting the interaction coefficient β₃

The pay benefit of being in a high-prestige job (β_1) is diminished by about 5% for each one standard deviation increase in age (β_3).

OR

The pay benefit of being older (β_2) is diminished by about 5% for each one standard deviation increase in occupational prestige (β_3).

Causal analysis

Causal question:

Does a change in one variable (X) cause a change in another (Y)?

Regression only identifies statistical relationships, not causal relationships

To draw a "causal arrow" you need *theory*

Causal analysis

To establish a causal relationship you (usually) need

1. Causal precedence

A theoretical reason to believe changes in X could affect Y (e.g. X precedes Y in time)

2. Statistical association

An established statistical association between X and Y (e.g. a convincing coefficient estimate)

3. No unaccounted-for confounders No other variables, observed or otherwise, that

confound the association between X and Y

Confounding variables

A variable *Z* is a **confounder** of the relationship between *X* and *Y* if *Z* is a causal influence on both *X* and *Y*

Confounding variables

A variable *Z* is a **confounder** of the relationship between *X* and *Y* if *Z* is a causal influence on both *X* and *Y*

For example:

To establish a causal relationship between education and income, you need to account for race, which could affect both education and income

Types of covariates

Confounder | Mediator

Z is a causal factor on both X and Y.

Must be "controlled for" to establish non-spurious relationship between \dot{X} and \dot{Y} .

E.g.: Race confounds the relationship between education and income.

Z is influenced by Xand influences Y.

Including as covariate elaborates on relationship between X and Y.

E.g.: Occupation mediates the relationship between gender and income.

Moderator

Z alters the relationship between \dot{X} and \dot{Y} .

Can be included as interaction variable to better describe the relationship between X and Y.

E.g.: Marital status moderates the relationship between gender and income.

Collider

Z causally influenced by both X and Y.

Must *not* be "controlled for" when establishing relationship between X and Y.

E.g.: Income is a collider for the relationship between gender and occupation.

Collider bias: an example

Commentary: Atheists prefer cats, Christians love dogs, study shows

Street Dawg Crew Christmas outreach at Liberty Park, Sunday,

Salt Lake City Tribune

Dec. 22, 2019.

Are newsworthy studies less trustworthy?

Collider bias: an example

Commentary: Atheists prefer cats, Christians love dogs, study shows

(Rick Egan | The Salt Lake Tribune) Jojo, in a Santa suit, at the Street Dawg Crew Christmas outreach at Liberty Park, Sunday,

Salt Lake City Tribune Jan 7, 2020

Dec. 22, 2019.

Are newsworthy studies less trustworthy?

