SOCI 620: QUANTITATIVE METHODS 2

Agenda

Linear regression as a probability model 1. Administrative

- 2. Linear regresion with one covariate
- 3. Joint posteriors
 - 4. Interpretation of logscale coefficients
 - 5. Hands on:

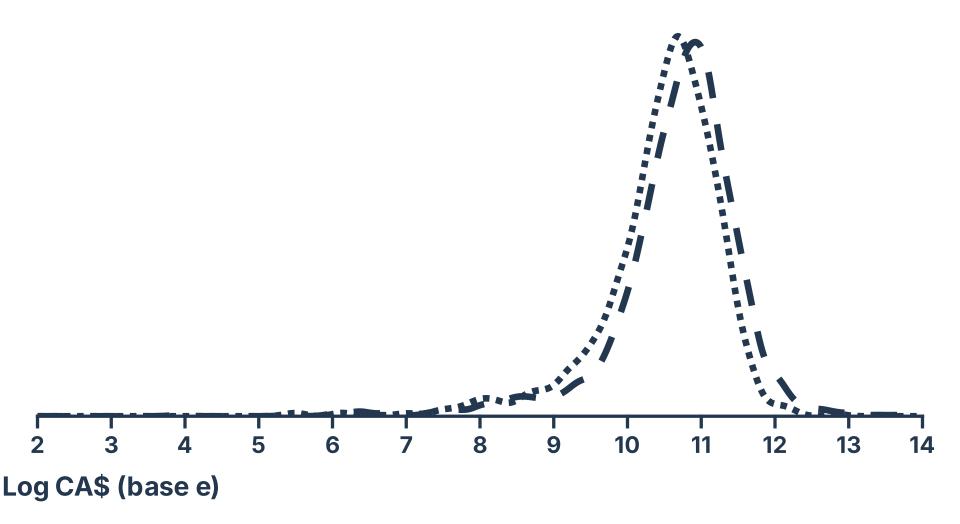
Working with posterior samples in R

Labs with TA

- ELeacock 808
- (for the rest of the term) i Mondays, 10am-11am

Worksheet

- : Check in
- E Due this Wednesday, Jan 22 by midnight
- E Peer assessments due by Monday, Jan 27



Note:

Canadian Income Survey (CIS) uses the Labour Force Survey (LFS) *sex* variable, which asks respondents for their sex "assigned at birth" and requires respondents to answer either "male" or "female." While the LFS includes a *gender* item, this is not available in the CIS.

Model from last week:

Entire population has one mean and one standard deviation

 $y_i \sim \operatorname{Norm}(\mu, \sigma)$

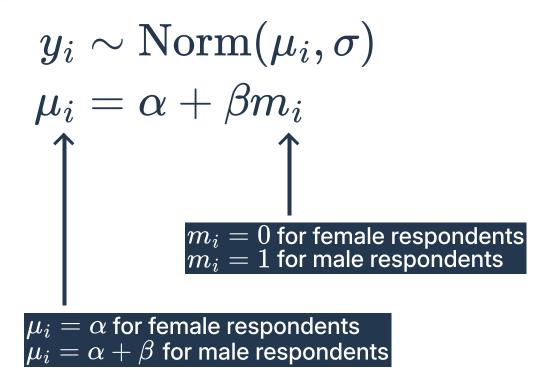
Regression:

Standard linear regression allows mean to vary depending on respondent

 $y_i \sim \operatorname{Norm}(\mu_i,\sigma)$ Each observation (*i*) can have a different value for μ_i

Regression:

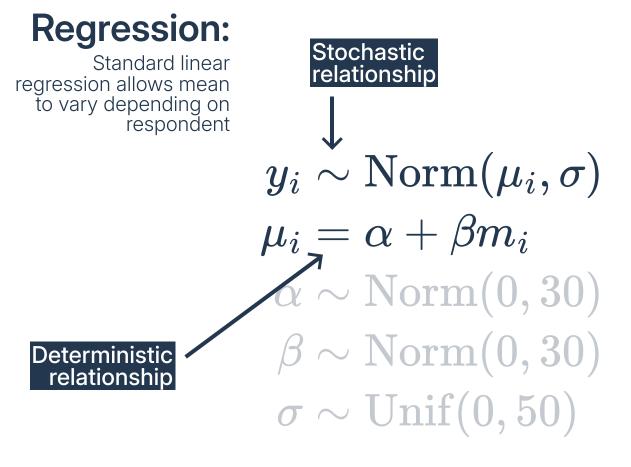
Standard linear regression allows mean to vary depending on respondent



Regression:

Standard linear regression allows mean to vary depending on respondent

 $y_i \sim \operatorname{Norm}(\mu_i, \sigma)$ $\mu_i = lpha + eta m_i$ $\gamma \sim \operatorname{Norm}(0, 30)$ $\beta \sim \operatorname{Norm}(0, 30)$ $\sigma \sim \operatorname{Unif}(0, 50)$



$egin{aligned} & \mathsf{No} \ \mathsf{predictors} \ y_i \sim \mathrm{Norm}(\mu,\sigma) \ & \mu \sim \mathrm{Norm}(0,30) \ & \sigma \sim \mathrm{Unif}(0,50) \end{aligned}$

One predictor

 $egin{aligned} y_i &\sim \operatorname{Norm}(\mu_i, \sigma) \ \mu_i &= lpha + eta m_i \ lpha &\sim \operatorname{Norm}(0, 30) \ eta &\sim \operatorname{Norm}(0, 30) \ \sigma &\sim \operatorname{Unif}(0, 50) \end{aligned}$

JATE EXPRESSIONS

Same model, three^{*} representations:

 $\mu_i = \alpha + \beta m_i$

 $egin{aligned} y_i &\sim \operatorname{Norm}(\mu_i,\sigma) \ \mu_i &= lpha + eta m_i \ lpha &\sim \operatorname{Norm}(0,30) \ eta &\sim \operatorname{Norm}(0,30) \ \sigma &\sim \operatorname{Vnif}(0,50) \end{aligned} egin{aligned} y_i &\sim \operatorname{Norm}(lpha + eta m_i,\sigma) \ lpha &\sim \operatorname{Norm}(0,30) \ eta &\sim \operatorname{Norm}(0,50) \end{aligned}$

* at least three

When we estimate this model, we get a single *joint* posterior distribution for *all three* parameters:

 $\Pr(\alpha, \beta, \sigma | D)$

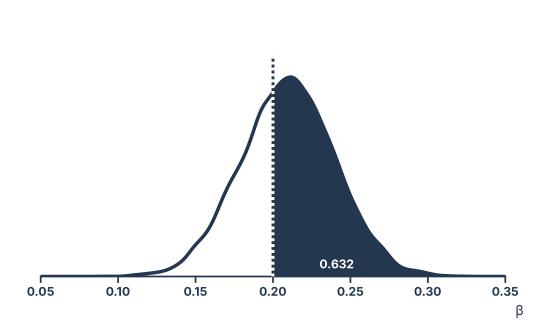
What can we do with a joint posterior?

 $\Pr(lpha,eta,\sigma|D)$ Data: Sample of 3,181 working adults in Canada

1. Describe the marginal posterior distributions		Mean	Std. dev	2.5%	97.5%
$\operatorname{Prob}(\alpha D); \operatorname{Prob}(\beta D); \operatorname{Prob}(\sigma D)$	α	10.46	0.02	10.42	10.51
	β	0.21	0.03	0.15	0.27
	σ	0.85	0.01	0.83	0.87

 $\Pr(lpha,eta,\sigma|D)$ Data: Sample of 3,181 working adults in Canada

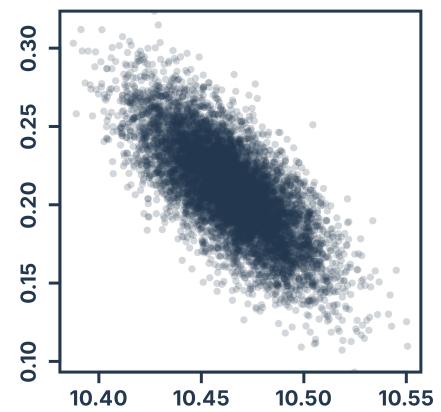
- 1. Describe the marginal posterior distributions $Prob(\alpha|D); Prob(\beta|D); Pr(\sigma|D)$
- 2. Describe posterior probability of theoretically relevant scenarios $Pr(\beta \ge 0.2|D) = 0.628$



 $\Pr(lpha,eta,\sigma|D)$ Data: Sample of 3,181 working adults in Canada

0

- 1. Describe the marginal posterior distributions $Prob(\alpha|D); Prob(\beta|D); Pr(\sigma|D)$
- 2. Describe posterior probability of theoretically relevant scenarios $Pr(\beta \ge 0.2|D) = 0.628$
- 3. Describe the 'partial' joint posterior distribution



α

LOG-SCALE COEFFICIENTS

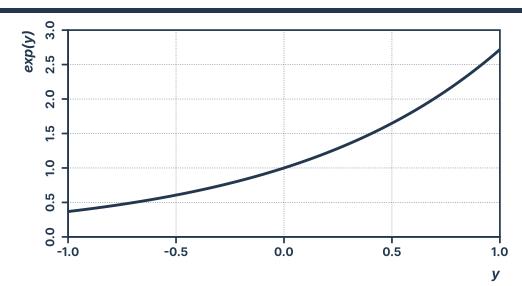
 $egin{aligned} y_i &\sim \operatorname{Norm}(\mu_i, \sigma) \ \mu_i &= lpha + eta m_i \end{aligned}$

	Mean	Std. dev	2.5%	97.5%	
lpha	10.46	0.02	10.42	10.51	$\exp(E(lpha))=e^{E(lpha)}=e^{\hat{lpha}}pprox 35,054$
β	0.21	0.03	0.15	0.27	$e^{\hateta}pprox 1.233$
σ	0.85	0.01	0.83	0.87	$e^{\hatlpha+\hateta}=e^{\hatlpha} imes e^{\hateta}pprox 43,220$

In general: if the outcome variable is on a log-scale, then exponentiating coefficient estimates ($e^{\hat{\alpha}}$) gives multiplicative factors

$$e^{\hateta}pprox 1.233$$

These results suggest that men make about 22.3% more than women on average



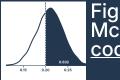
ADDING COVARIATES

From here, we can add covariates to model income however we like

$$egin{aligned} y_i &\sim \operatorname{Norm}(\mu_i, \sigma) \ \mu_i &= lpha + eta_1 m_i + eta_2 age_i + eta_3 college_i \ lpha &\sim \operatorname{Norm}(0, 30) \ eta_1 &\sim \operatorname{Norm}(0, 30) \ eta_2 &\sim \operatorname{Norm}(0, 30) \ eta_3 &\sim \operatorname{Norm}(0, 30) \ \sigma &\sim \operatorname{Unif}(0, 50) \end{aligned}$$

Compact notation:	$y_i \sim \operatorname{Norm}(\mu_i, \sigma)$
	$\mu_i = lpha + eta_1 m_i + eta_2 age_i + eta_3 college_i$
	$lpha,eta_1,eta_2,eta_3\sim\mathrm{Norm}(0,30)$
	$\sigma \sim \mathrm{Unif}(0,50)$

Image credit



Figures by Peter McMahan (<u>source</u> <u>code</u>)