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Labs with TA
⦙ Leacock 808
(for the rest of the term)

⦙ Mondays, 10am-11am

Worksheet
⦙ Check in
⦙ Due this Wednesday, Jan 22 by
midnight
⦙ Peer assessments due by
Monday, Jan 27
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Modeling income by sex                               

Note:
Canadian Income Survey CIS) uses the Labour Force Survey LFS sex
variable, which asks respondents for their sex “assigned at birthˮ and
requires respondents to answer either “maleˮ or “female.ˮ  While the LFS
includes a gender item, this is not available in the CIS.
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Modeling income by sex                               
Model from
last week:

Entire population has
one mean and one
standard deviation
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Modeling income by sex                               
Regression:

Standard linear
regression allows mean
to vary depending on

respondent

Each observation ( )
can have a different
value for 
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Modeling income by sex                               
Regression:

Standard linear
regression allows mean
to vary depending on

respondent

 for female respondents
 for male respondents

 for female respondents
 for male respondents
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Modeling income by sex                               
Regression:

Standard linear
regression allows mean
to vary depending on

respondent

Prior for each of
the parameters
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Modeling income by sex                               
Regression:

Standard linear
regression allows mean
to vary depending on

respondent

Stochastic
relationship

Deterministic
relationship
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Modeling income by sex                               

No predictors One predictor
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Alternate expressions                                 

Same model, three  representations:

at least three

*

*
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Joint posterior                                                  

When we estimate this model, we
get a single joint posterior

distribution for all three
parameters:

What can we do with a joint posterior?
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Joint posterior                                                  
Data:
Sample of 3,181 working
adults in Canada

�Describe the marginal
posterior distributions

Mean Std. dev 2.5% 97.5%

10.46 0.02 10.42 10.51

0.21 0.03 0.15 0.27

0.85 0.01 0.83 0.87
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Joint posterior                                                  
Data:
Sample of 3,181 working
adults in Canada

�Describe posterior
probability of theoretically
relevant scenarios

�Describe the marginal
posterior distributions
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Joint posterior                                                  
Data:
Sample of 3,181 working
adults in Canada

�Describe the ‘partialʼ joint
posterior distribution

�Describe the marginal
posterior distributions

�Describe posterior
probability of theoretically
relevant scenarios
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Log-scale coefficients                                 

Mean
Std.
dev 2.5% 97.5%

10.46 0.02 10.42 10.51

0.21 0.03 0.15 0.27

0.85 0.01 0.83 0.87

In general: if the outcome variable is on
a log-scale, then exponentiating
coefficient estimates ( ) gives
multiplicative factors

These results suggest that men make
about 22.3% more than women on
average
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Adding covariates                                           
From here, we can
add covariates to

model income
however we like

Compact notation:
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Image credit
Figures by Peter
McMahan (source
code)
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